_
_
Ω
Ø
N
0
Ω
+
J
Q
ď
-
}
}
}
. w w w//
- w w w//:
. w w w//: d
tp://www.

Name of the module/subject Code Electric Power System Operation 101031438101031689	18		
Electric Fewer Cyclem Operation			
Field of study Profile of study (general academic, practical) Year /Semester	_		
Electrical Engineering (brak) 4 /	8		
Elective path/specialty Subject offered in: Course (compulsory, elec	ive)		
Electric Power Systems Polish obligatory			
Cycle of study: Form of study (full-time,part-time)			
First-cycle studies part-time	part-time		
No. of hours No. of credits			
Lecture: 9 Classes: 9 Laboratory: 9 Project/seminars: - 2			
Status of the course in the study program (Basic, major, other) (university-wide, from another field)			
(brak) (brak)			
Education areas and fields of science and art ECTS distribution (number and %)			
technical sciences 2 100%			
Technical sciences 2 100%			

Responsible for subject / lecturer:

dr inż. Ireneusz Grządzielski

email: email: ireneusz.grzadzielski@put.poznan.pl

tel. 61 665 2635 (2392) Faculty of Electrical Engineering

ul. Piotrowo 3A, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Possesses basic knowledge of the theory of electrical circuits, electrical machines, electric power engineering and electrical power generation			
2	Skills	Has effective self-study ability in the domain of the chosen specialization, is able to integrate the knowledge acquired at the credited courses			
3	Social competencies	Is aware of the need to develop his knowledge and competencies, is ready to undertake the cooperation and team work			

Assumptions and objectives of the course:

Getting knowledge of the electric power system operation under steady operating conditions, methods of simulation computations of the power flows in the HV and EHV meshed networks, market-based power flow optimization, practical use of the power flow computation program PLANS and DAKAR.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Has general knowledge of automatics and automatic control fundamentals know the criteria and principles of selection power protection automation devices [K_W22++]
- 2. Has knowledge of the electric power system fundamentals including structure and operation states of the electric power sectors: generation, transmission and distribution, knows basic rules of the operation and maintenance of the electric power system elements [K_W24 +++]
- 3. Has knowledge of the electric power engineering development trends in the EU integrated electric power system as well as rules of its safe operation [K_W25++]

Skills:

- 1. Can elaborate the engineer task completion?s documentation and describe the task?s results [K_U07++]
- 2. Can choose suitable technique and use measuring equipment (analog or digital) to measure the basic measurable magnitudes typical for engineering [K_U14+]
- 3. Can properly use and maintain electrical devices according to the general requirements and technical docu [K_U23+++]

Social competencies:

1. Is aware of the weight and understands different aspects and effects of the electric engineer?s activities including those related to the environmental impact and regarding the responsibility for the undertaken decisions - [K_K02++]

Faculty of Electrical Engineering

Assessment methods of study outcomes

Lectures and classes:

- 1. Assesment of the knowledge and skills shown at the written and oral examinations,
- 2. Continuous assessment during courses (bonus for activity and perception quality).

Laboratory

- 1. Test of the knowledge necessary to deal with problems posed in the lab tasks.
- 2. Assessment of the knowledge and skills related to the lab task completion,
- 3. Assessment of the task report

Course description

Lectures and classes: Steady states in electric power system. Market-based optimization of the power system operation. Power flow calculations? role of the node potential method. Application of the Gauss and Newton? Raphson iteration technique to solve the non-linear node equations. Power flow optimization. Estimation of the power system conditions.

Laboratory: involves experiments carried out using the power flow programs PLANS and DAKAR concerning topics presented in lectures.

Basic bibliography:

- 1. Kujszczyk Sz. i inni: Elektroenergetyczne układy przesyłowe, WNT, Warszawa 1997.
- 2. Kacejko P., Machowski J.: Zwarcia w systemach elektroenergetycznych, WNT, Warszawa 2002.
- 3. Mitkowski E., Grządzielski I., Marszałkiewicz K.: Praca i sterowanie systemów elektroenergetycznych zbiór zadań, Wydawnictwo Politechniki Poznańskiej, Poznań 1985

Additional bibliography:

- 1. Kremens z., Sobierajski M.: Analiza systemów elektroenergetycznych, WNT, Warszawa 1996.
- 2. Machowski J., Bernas S., Stany nieustalone i stabilność systemu elektroenergetycznego, WNT, 1989
- 3. Bernas S.: Systemy elektroenergetyczne, Warszawa, 1982.
- 4. Praca zbiorowa Napowietrzne linie elektroenergetyczne wysokiego napięcia, WN-T 1973

Result of average student's workload

Activity	Time (working hours)
1. participation in lecture courses and classes	18
2. participation in labs	9
3. participation in discussions related to lectures	2
4. participation in discussions related to labs	2
5. preparation to labs	5
6. lab reports? elaboration	5
7. preparation to examination	5
8. taking an examination	3

Student's workload

Source of workload	hours	ECTS
Total workload	48	2
Contact hours	29	1
Practical activities	23	1